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ABSTRACT

Among the modulation classification methods, spectral correla-
tion density (SCD) is an attractive method as it operates effec-
tively under low SNR conditions. However, computation com-
plexity of the SCD makes it an impractical solution for real-time
signal classification. In this study, we map the entire SCD flow
onto high-end GPU (Tesla-K20), mobile GPU (Tegra-K1), and
hybrid architecture that couples Tegra-K1 with the Zyng-7000
FPGA as a single lane. We discuss our parallelization approach
on each platform and present details of our lane-based parallel
architecture. We achieve a signal classification throughput of
111 signals/second on Tesla-K20 GPU (390x faster than single-
threaded implementation running on a 2.33GHz processor), 9
signals/second on the Tegra-K1, and 19 signals/second on the
hybrid architecture. Finally, we present the model of an n-lane
architecture with a dual ring bus interconnect whose throughput
increases linearly with a better power budget than the Tesla-K20.

1. INTRODUCTION
The task of determining the modulation of an incoming signal
has been named modulation classification (MC), recognition, or
identification [1], and has a variety of applications in the military
and commercial domains [2]. Recent advances in wireless com-
munications across the globe, especially low-cost software de-
fined radios and their wide availability, readily allow adversaries
to devise and dynamically change communication schemes and
patterns that are inherently much harder to detect. In a non-
cooperative communication, the transmitter does not intend for
its data to be interpreted by the observing radio. Signal classifi-
cation involving non-cooperative communications is in general a
more challenging scheme [3] than cooperative communications
as properties of the incoming signal, such as its coding scheme
may not be known a-priori. Particularly computation complex-
ity of signal classification methods pose as the main barrier for
real-time signal classification using general purpose processors.
A feature-based classification method extracts a set of de-
scriptive values from the signal that differentiates each signal
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from each other. These features can include cumulants, statis-
tics, Fourier Transform coefficients, Wavelet Transform coeffi-
cients, or a combination of them [4]. Feature extraction meth-
ods in MC can be largely separated into two types: likelihood-
based and feature-based. Generally likelihood-based methods
can be considered optimal in the sense that they achieve the
least probability of misclassification [5]. However, this comes
at the cost of a computational complexity that eludes real-time
implementation in many cases [6]. From algorithmic point of
view, because of their computational efficiency, feature-based
methods coupled with decision structures such as, support vec-
tor machines (SVM) have been preferred over likelihood-based
methods. However, such an approach is suboptimal in terms
of probability of correct classification. Furthermore, each fea-
ture extraction method varies in the amount of data it needs, the
percent correct classification, computational complexity, and the
amount of modulations it can classify.

Feature based MC can be divided into three stages, each of
which with its own challenges. First, a signal goes through a
pre-processing stage in which common signal parameters such
as center frequency or symbol rate can be estimated and equal-
ization can be done. This is done to maximize the effectiveness
of the second stage, the feature extraction stage, in which a set
of features are extracted from the signal using a variety of al-
gorithms. Choosing a set of features that will most effectively
describe the incoming signal has been the primary subject of
research in MC. Lastly the classification stage implements a de-
cision structure to best differentiate the incoming signals based
on the extracted features. In this study we focus on the fea-
ture extraction stage, and we are particularly interested in the
spectral correlation density (SCD) method as it operates effec-
tively under low SNR conditions and is able to extract features
for classifying numerous types of signals. The SCD estimation
algorithm comes in two varieties: FFT Accumulation method
(FAM) [7] and Spectral Strip Correlation Algorithm (SSCA) [8].
In our design, we chose to implement the FAM variety since it
is considered to be more computationally efficient than SSCA
[9]. However, computation demand of the SCD method (65,536
of 32-point complex FFTs for one signal during one stage of the
SCD flow), still makes it an impractical solution for real time
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signal classification. A highly parallelized concurrent execution
flow is needed to be able classify numerous signals in real-time
that shift their center frequency unpredictably, have inherently
low signal to noise ratios. To the best of our knowledge there
is no prior parallelization work on SCD targeting multicore and
many-core architectures. The related work by [9] focuses on im-
plementing a SVM on a FPGA to classify the results obtained
from the SCD flow. Furthermore, our work is the first study on
mapping SCD onto a FPGA-GPU integrated system.

Our goal is to design a heterogeneous parallel computing plat-
form that couples Field Programmable Gate Array (FPGA) and
Graphics Processing Unit (GPU), and achieve real-time classi-
fication. We restructure each stage of the SCD program flow,
expose fine and coarse grained parallelism, achieve massively
concurrent execution, and take advantage of computation power
of each device in a complementary manner.

The rest of the paper is organized as follows. In section 2,
we present the SCD flow concurrently with our GPU based par-
allelization approach for each stage. We present benchmark-
ing studies on FFT and data manipulation intensive stages of
the SCD flow and justify our workload partitioning between
the GPU and FPGA. We then present our parallelization ap-
proach for the tasks that are suitable for the FPGA. In section
3, we present a detailed performance comparison between the
GPU-only and GPU-FPGA integrated platforms. We discuss
our profiling and modeling based partitioning methodology, and
lane based architecture development approach that offers mas-
sive parallelism for the SCD flow. In section 4, we finally present
our conclusions and future work.

2. ALGORITHMIC APPROACH: STEPS OF THE
SPECTRAL CORRELATION DENSITY FLOW

Step 1: Framing and Windowing

The signal of an arbitrary length is split up into P parts of
length Np each. Each part overlaps with its predecessor. The
offset between the beginning of two consecutive parts is set to
L where L = Np/4. This process is called framing of the signal.
These frames are then arranged column-wise into a matrix of
size Np x P as illustrated in Figure 1.

If a signal is sampled using a rectangular filter (effective out-
put of previous stage), the steep cut-offs at both ends cause
high frequency components to be artificially introduced into the
Fourier transform of the signal. Therefore a windowing function
of length Np is applied to the framed signal as shown in Figure 2.

Since both signal and window are 1D vectors, the window is
applied by a simple vector multiplication with the framed sig-
nal as illustrated in Figure 3. The number of scalar multipli-
cations in this case is Np x P. Factoring in the number of sig-
nals to be processed, this value scales to Np x P x signal-count.
On the GPU, a single thread will handle a scalar multiplication.
Assuming typical values for Np, P and signal-count (256, 32
and 30 respectively), the total number of scalar multiplications
is 245,760. The K20 GPU can concurrently run approximately
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Figure 1: Framing process.
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Figure 3: Applying window through vector multiplication.

26K threads (13 SMP x 2048 Threads / SMP) to complete this
process in 10 iterations.

On the GPU, each thread block processes one frame and con-
sists of 256 threads. There are 32 such thread blocks since the
signal is divided into 32 overlapping parts. This mapping is il-
lustrated in Figure 4. Data from each frame is brought into the
shared memory and vector multiplied with the hamming win-
dow. The windowed frames are then stored into a matrix in col-
umn major order. The matrix is stored as a linear contiguous
block in the global memory.

Step 2: Iterative 256-point FFT

Each frame obtained from step-1 goes through the FFT as
shown in Figure 5. This stage is executed in batch mode, where
32 columns of 256-point element arrays go through the FFT
stage in parallel for each signal.

Step 3: FFT Shift + Down Conversion + Transpose

The third kernel handles three operations - FFT shift (to get
the FFT result in ’natural order’), down conversion of the FFT
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Figure 5: Applying 256-point FFT on Windowed Frames.

shifted signal and transpose of the resulting matrix in order to
prepare it for the next set of FFTs.The expression responsible for
down conversion is shown in equation 1.

The FFT output is symmetrical around the zero frequency. In
accordance with this, axis +/- m represents the frequency axis.
Axis k represents the number of parts the signal was split up
into (P). Once elements are distributed to threads, each thread
(with coordinates (k,m) ) performs the computation as illustrated
in Figure 6. Correspondingly, threads processing elements that
belong to one column (i.e. elements belonging to the same FFT
output frame) are grouped into thread blocks.

However, the CUDA / C++ libraries do not support complex
exponentials and therefore the equation is converted to a sum of
cosine and sine using Euler’s formula (equation 2). After this
conversion, resulting expression is shown in equation 3. The
down conversion step is a purely element-wise operation and
therefore can be shifted to the very beginning or to the very end
of the group of three operations. This of course requires a mod-
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Figure 6: Down Conversion over each element of the 256x32 matrix.

ification in the equation computing this stage. In order to keep
recalculation of the equation simple, we have chosen to perform
down-conversion first, followed by a movement of elements that
achieves FFT shift and transpose in one go. The final expression
is shown in equation 4, which is substituted in equation 3.

—2mkmLi
outy, = outy,, xe NP (1)
¢ = cosf +isin6 2)
OUtyy, = OUtyy, X [cOs rkmLi isin M] (3)
m= (m+ %)mode “4)

The last step of moving elements around to perform the FFT
Shift and transpose is illustrated in Figure 7. The matrix is ar-
ranged in column major order. The highlighted regions (red,
green, blue and yellow) of the matrix show how the data move
before and after the transformation takes place. In addition to
moving between quadrants of the matrix, each highlighted re-
gion also flips about the main diagonal of that region.

To perform FFTshift + transpose, we have the option of choos-
ing between a 1D kernel and a 2D kernel. Assume we chosea 1D
kernel. The minimum length of such a kernel must be 32 in or-
der to maintain coalesced memory access and to ensure there are
no idle threads. This is because there are 32 threads in a warp.
Such a kernel must read column-wise (since we store in column
major format) and write rows. For example, a kernel must read
a column of contiguous points (say, column 2 of the input ma-
trix consisting of points 9 to 12 in Figure 7) and write a row in
the output matrix as shown by the red box around the elements.
Note that the output matrix is also stored in the column major
format since the next stage will need access to contiguous sets
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Figure 7: FFT Shift and Transpose.

of rows of the pre-transformation matrix, i.e. points 1, 9, 17, 25
must be contiguous post transformation. Had the output matrix
been stored in row-major format, elements of rows from the pre-
transformation matrix would still be strided. As is clearly seen, a
1D kernel will be writing rows to the global memory in a strided
fashion despite having 32 threads. With a 2D kernel, the threads
will read in a 2D block of data from the global memory into the
shared memory, column-wise. After performing down conver-
sion on each element, the kernel will then read the shared mem-
ory row-wise and write to the output matrix column-wise. Note
that warps will read in a contiguous column and write a different
set of data contiguously to the output matrix. This is achievable
since coalescing rules do not apply to the shared memory. The
important thing to remember is every warp’s reads are stored in
the shared memory and accessible by all warps of that thread
block. In contrast to this, the 1D case had 1 warp reading in
and storing its data exclusively. It then needed to write the same
data back to the output matrix in a strided fashion and hence 2D
kernels are better suited for this transformation.

The most naive way of implementing this stage with a 2D ker-
nel is to design a kernel with thread block dimensions equal to
one of the highlighted regions of Figure 7, assigning each ele-
ment of the region to a thread inside the block. Given the input
parameters (256 as window size and 32 overlapping parts), such
a kernel is impossible on devices with compute capability less
than 3.0 as each thread block would have 2048 threads. Devices
with compute capability 2.0 have a limit of 1024 threads per
thread block. This is much lower than the limit of concurrent
blocks that can be launched on the GPU. With fewer blocks, a
small amount of shared memory will see numerous concurrent
accesses resulting in more bank conflicts and slower operation.

The next approach is to divide the matrix (shaded with re-
gions from Figure 7) among thread blocks numbered O to 7 as
shown in Figure 8. Since we divide the matrix into 8 thread
blocks, shared memory access is more relaxed leading to fewer
bank conflicts. The regions of same color in the input and out-
put matrix are handled by the same thread blocks. Each thread
block consists of a whole number of warps. The dimensions of
a thread block are also representative of the shared memory size
allocated within. Consider thread block 7 (lower right corner,
in yellow). Data is read column-wise into the shared memory

ﬂﬂlﬁﬁ-ll
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(green band, representing two warps of threads). Next, a half-
warp reads the shared memory row-wise. This action is denoted
by ared band. Note that this data is different from what was read
into the shared memory by the threads earlier. The data is then
written to the output matrix at the appropriate location. Access
to the output matrix is denoted by the blue band. The most ob-
vious defect of this approach is that coalesced memory accesses
take place only in half-warps when writing the output matrix.

16 16 Each thread block
is also representative
of shared memory
dimensions

—_—

FFT Shift &
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“

Figure 8: Thread block organization for 2D Kernel.
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Figure 9: Revised thread block organization for 2D Kernel.

We simply change the dimensions of the thread blocks to
32x32 instead of 64x16 as in the previous approach. Both ad-
dress 1024 threads each. This is illustrated in Figure 9. Using the
same convention as the previous approach, the green band (one
warp of threads) in thread block 7 reads data from the global
memory into the shared memory. Unlike the previous approach,
the red and blue bands also represent complete warps of threads,
reading row-wise from the shared memory and writing column-
wise to the output matrix, respectively. This approach is the best
considering the GPU and program parameters on hand. Further-
more, trying to reduce the block size below this approach’s (32
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Figure 10: SCD Matrix formation through Conjugate product and 32-
point FFT for all pairs (256x256).

x 32) in order to increase the number of blocks to reduce shared
memory bank conflicts, won’t be beneficial because we will be-
gin dealing with incomplete warps, i.e. less than 32 threads in
at least one dimension.

Step 4:SCD Matrix and Alpha Profile Calculation

This last stage deals with the formulation of the SCD matrix
and calculation of the alpha profile, which is the most compute
intensive stage in the entire algorithm. Broadly, this stage can
be divided into the following four steps: Conjugate product cal-
culation, FFT of the conjugate products (FFT shifted to ensure
natural order), SCD Matrix formation, and Alpha profile calcu-
lation.

Overview: The output of Step 3 is a 2D array with 256 rows
and 32 columns. All pairwise row combinations (256x256 in
number) go through the computation flow shown in Figure 10.
First row and the conjugate of the second row undergo vector
multiplication. The FFT of the product (32-point FFT) is calcu-
lated and P/4 sections from each end of the vector are extracted
while the middle section is discarded. Let the left end of the vec-
tor be called Pa and the right end Pb. After extraction, the "scd"
matrix is populated (which is initialized to zero) as shown in the
figure. Pb and Pa are aligned one on top of the other while fill-
ing up the matrix in the direction pointed by the red arrow. This
process is repeated for all possible pairs of rows, including rep-
etitions (i.e. the same row may be counted twice). The result of
this stage is a scd matrix with non-zero values (Pb - Pa columns)
taking a diamond shape as shown in Figure 11.

Step 4.1: Conjugate product calculation- In the first step,
(NpxNpxP) element-wise multiplications take place consider-
ing all possible pair-wise combinations of all rows of the down-
converted matrix. With the current set of input parameters, this
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Figure 11: Alpha profile generation for classification.

number turns out to be 2,097,152. This far exceeds the num-
ber of concurrent threads that can be launched on any GPU.
The number of point-wise multiplications for all combinations
of one particular row with all rows, inclusive of itself, is Np x
P, which turns out to be 8,192 threads. This falls well within
the capabilities of most GPUs. Based on the above deduction,
this stage is computed by a serialized loop over all rows in the
down-converted matrix.

FFT computation time Vs. # of FFTs
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Figure 12: Number of FFTs vs execution time for 256-points and 32-
points on K20 GPU.

Step 4.2: 32-point FFT- The output of Step 4.1 is 65,536
32-element vectors for one signal. Each vector goes through 32-
point FFT computation in this step. Here we present an analysis
of FFT on GPU and FPGA. This analysis will lead to our con-
clusion on the choice for running FFT on the GPU over FPGA.
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Figure 13: FFT Computation and Shift, Matlab flow (top), GPU flow
(bottom).

Figure 12 shows the computation time trends for 256 and 32
point FFTs of various batch sizes. We observe that 2048 and
16,384 are the threading limits for the GPU over 256-point and
32-point FFTs respectively. For example, beyond 2048 FFTs for
256-point FFT, execution time increases linearly for every addi-
tional 2048 FFTs. 65K 32-point FFT is completed in 0.2ms on
the K20 GPU.

Recently the Tegra K1 GPU (also known as the Jetson K1) tar-
geted for mobile devices has been made available for program-
ming with CUDA. Interestingly, the K20 and the Tegra K1 have
the same multiprocessor architecture. The number of concurrent
threads per multiprocessor is 2048 for both K20 and Tegra K1.
The number of thread blocks that can be launched on a multi-
processor is 16.While K20 houses 13 multiprocessors, Tegra K1
houses only one multiprocessor. Table 1 shows the FFT resource
usage analysis on a Virtex7 FPGA. Table 2 compares FPGA with
two GPUs in terms of the execution time of a single FFT and
65K FFTs along with the precision of operations, device cost
and peak power consumption features. Here we conclude that
the Kepler (K20) GPU is a more desirable choice as a platform
for the FFT intensive kernels of the SCD flow. Even for a high-
end FPGA, such as Virtex7, the total number of FFTs (with the
above specification) one can instantiate is 300 FFTs based on
the available DSP blocks (Table 1). Using the remaining avail-
able soft logic blocks, number of FFTs executed concurrently
could be increased (600-800 FFTs), however in such a mapping
scenario during the iterative FFT stage, FPGA needs to be con-
figured first to carry out the conjugate products and then recon-
figured to execute the FFTs. Reconfiguration time overhead then
would become a major concern under real-time requirement.

Step 4.3: SCD Matrix Formation- Following the FFT com-
putation, the rows are then FFT shifted and chopped into smaller
segments as shown in the serial flow (implemented in MAT-
LAB) in Figure 13. However, FFT shift is an expensive oper-
ation. In the GPU implementation, the FFT shift stage has been

Pb of length P/4

Pa of length P/4

Pb of length P/4
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Table 1: Resource usage 32-point FFT on Virtex7 XC7VX690T

Resources LUT FF BRAM | DSP
Available | 433200 | 866400 2940 3600
FFT 2559 3094 8 12

Table 2: Virtex7, K20 and Tegra K1 FFT performance analysis.

Virtex7 K20 Tegra K1
32-point FFT(ms) 0.002 0.05 0.05
65,536 FFTs in batches 304 4 32
Total time (ms) 0.612 0.201 1.613
Precision Fixed | Floating | Floating
Cost($) 7,836 3,021 192
Peak Power (W) 5.68 225 5

eliminated. This re-positions Pa and Pb segments to lie in a con-
tiguous manner (Modified flow) around the center of the FFT
output vector, as opposed to lying on opposite ends (MATLAB
flow). This also takes care of global memory coalescing issues
on older GPUs.

The third step forms a partial SCD matrix and computes a lo-
cal partial alpha profile from this matrix. While the GPU can
easily store multiple SCD matrices in the global memory corre-
sponding to multiple signals, forming such a matrix would result
in numerous uncoalesced writes owing to the structure of the
matrix and thus slow down the overall performance of the pro-
gram. To overcome this hurdle, the entire matrix is processed by
8 threadblocks each of which brings in a separate portion of the
FFT output matrix into the shared memory. The regions marked
Pa and Pb (Figure 13) are then extracted from each row present
in the various shared memories. To compute a local partial al-
pha profile, elements joined by a solid line double headed arrow
(Figure 14) are replaced by the maximum of the two elements.
Since these are operations within the shared memory, they are
relatively quick. At the end of the kernel, every block writes its
results back to the global memory.
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Figure 14: Comparator based partial local alpha profile generation.
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Figure 15: Serial connection with Tegra GPU and Zynq FPGA.

This brings us to the first point of inefficiency in the flow. The
length of sections Pa and Pb taken together are smaller than 32,
the warp size. Therefore, a fraction of the warp will operate
on them to find the maximum value between sections of con-
secutive rows. Referring Figure 14, once Pa and Pb have been
isolated, threads will be mapped to locations 8 to 25, 48 to 57,
80 to 89, 112 to 121 and so on. For a maximum block size of
1024 threads, this amounts to 264 threads ( 16 non-overlapping
elements - 8-15 and 113-121 in Figure 14, plus 8 overlapping
elements out of 16, multiplied by the number of comparisons
among 32 rows (32-1) ). Since this kernel was initially called for
1024 threads to extract Pa and Pb while ensuring coalesced ac-
cess, 1024-264 = 760 threads go unused. This results in a maxi-
mum thread utilization efficiency of 25.78%. Note that actual ef-
ficiency will be slightly lower than this since the kernel has con-
ditional statements within warps, not just at warp boundaries, as
is necessary for efficient kernel execution. However, with this
block structure, threads do write in a coalesced fashion back to
the global memory after the operation has been performed.

Step 4.4:Alpha Profile Generation- The fourth step is respon-
sible for merging the local partial alpha profiles from various
thread blocks into one complete alpha profile. This kernel’s op-
erations are denoted by the bold dashed line double headed ar-
row in Figure 14. Once multiple local alpha profiles have been
merged, its contribution is updated on the main alpha profile.
At the end of all iterations, the final alpha profile will be avail-
able. Inefficiency concerns are also pertinent to the fourth ker-
nel. Global memory sections to be merged are 8 elements in
length each and strided.

Summarizing, calculations by the steps 4.3 and 4.4 are sub-
optimal primarily because of unused threads within a warp and
branching statements within warp boundaries. In our design, we
choose to give preference to coalesced global memory access
over the above two possibilities
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2.1. GPU based Profiling

Earlier, we concluded that based on the amount of FFT calcu-
lations required by the SCD flow, GPU was preferable over the
FPGA as it offered higher degree of parallelism, even though
FPGA was superior over GPU based on single FFT calculation
(Table 2). Table 3 presents our profiling analysis for each stage
of the SCD flow running on the GPU. This analysis has led us
to a critical design decision on which kernels are suitable for the
GPU and which kernels are suitable for the FPGA. In Table 3, for
the "Warp Execution Efficiency" column, a value closer to 100%
is desirable. A warp efficiency of 100% means that all threads
in the warp were executed in parallel. Any value less than that
indicates some threads were serialized. Not surprisingly, the ker-
nels moving data around are the ones that don’t utilize the GPU
as efficiently. Therefore, modules that compute the alpha profile
(Merge partial local alpha profile and Update main alpha pro-
file) are more suitable for FPGA implementation as they involve
memory manipulation intensive operations, which FPGAs are
known to be superior for. Based on this workload partitioning,
we built a prototype system that integrates Tegra K1 GPU and
FPGA, where steps 1 through 4.2 are executed on the GPU, and
steps 4.3 and 4.4 are executed on the FPGA.

Table 3: Stages of the SCD flow, GPU resource utilization, Number of
blocks (B) and threads per block (T) on the GPU

Kernel name Warp T B
Efficiency %
1-Framing and Windowing 100 256 | 32
2-256 point FFT 100 128 | 4
3-FFTShift +DC+Transpose | 100 1024 | 8
4.1-Conjugate Products 100 1024 | 8
4.2-32point FFT 100 128 | 8
4.3.1-Partial alpha profile 76.32 1024 | 8
4.3.2-Merge alpha profile 58.33 32 8
4.4-Update alpha profile 98.19 288 8

We consider several design choices when integrating the
Tegra K1 GPU and FPGA. The working testbed is shown in Fig-
ure 15, which transfers data at 1 bit/cycle (32 cycles/element)
between the Tegra GPU and FPGA. In this setup, the execution
time for the FPGA tasks including data transfers from and to
the FPGA is 278ms. Tegra GPU and Zynq FPGA used in this
testbed have 195 and 484 pins available respectively. A design
that transfers 1 element/cycle (32 pins for send, 32 pins for re-
ceive) between GPU and FPGA reduces the execution time to
45.03ms and requires 69 pins including the 5 bits needed for con-
trol signals. When we transfer 2 elements/cycle (101 pin usage),
execution time reduces to 37.53ms. We can actually transfer up
to 4 elements per cycle and receive 1 element per cycle resulting
with a total of 165 pin usage.

Figure 14 shows iterative way of generating the alpha profile,
where one pairwise comparison is executed in each cycle. Other
design option is to keep increasing the comparator units. Table 4
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shows the total execution time for the case of 2 elements/cycle
transfer with respect to change in the number of concurrent com-
parison operations. Step-4 takes 6.59ms on the Tegra GPU.
Based on our analysis, beyond 64-way parallelism, the benefit
of parallelization is minimal.

Table 4: FPGA execution time for alpha profile generation with respect
to number of concurrent comparisons

FPGA (ms) 64-bit data bus
l-way | 16-way | 32-way
37.53 | 6.18 5.00

Tegra K1 (ms)
6.59

64-way
442

Table 5 shows the benefit of transferring 4 elements/cycle over
2 elements/cycle. In the table, bit-serial design refers to sending
data 1 bit at a time from Tegra GPU to FPGA. Simple parallel
refers to 1 element/cycle transfer. We conclude that the final ar-
chitecture should support 4 elements/cycle transfer from GPU
to FPGA and the FPGA should operate with 64 parallel com-
parators. This results with a 1.609ms execution time including
the data transfer overhead. Fortunately, pin limitation does not
change the whole number of signals processed per second for the
64-way configuration. (64 way, 8 elements - 19.6 signals/sec;
64 way, 4 elements - 19.25 signals/sec). Table 6 shows the post
placement and routing based timing analysis for the two kernels
chosen to be implemented on the FPGA. In this implementation
we target the Zynq7000 and the Block RAMs used are 36 kilobit
BRAMSs. For generating the post-placement and routing timing
results, we set a timing constraint that specified the clock to have
arate of 140MHz. We also conclude that for these two kernels a
low-end FPGA such as Zynq7000 is sufficient. A Virtex7 FPGA
would result with underutilized FPGA , which is not a cost ef-
fective choice.

Table 5: FPGA execution time for alpha profile generation with respect
to elements/cycle and 16-way and 64-way comparison.

Execution time (ms) for Step4: Alpha profile generation
Bit Simple | 16-way | 16-way | 64-way
Tegrakl serial | parallel | 1-elem | 2-elem | 4-elem
6.59 27835 | 45.03 | 9.92 6.18 1.61
- 0.02x 0.15x | 0.66x 1.07x 4.09x

3. PERFORMANCE ANALYSIS AND
ARCHITECTURE DEVELOPMENT

Table 7 shows the execution times calculated for a 4096 point
signal over 2 different hardware configurations. Configuration 1
(GPU-Only) involves executing SCD entirely on the K20 GPU
(706MHz, 2496 Cores) or the Tegra K1 (850 MHz, 192 Cores ).
Configuration 2 is the GPU/FPGA partitioned SCD flow running
in low-power mode (Tegra K1 and Zynq 7000). Serial (Mat-
lab) code is executed on Intel I5 2.33 GHz 64 bit Processor with

77

Table 6: Post-routing resource usage and timing analysis for alpha pro-
file generation on Zynq7000.

BUFGs 1 of 32 3%
External IOBs 81 of 220 36%
LOCed IOBs 0 of 81 0%
RAM36_EXPs | 4 of 48 8%
Slices 55 of 7200 1%
Slice Registers 153 of 28800 | 1%
Slice LUTs 69 of 28800 1%
LUT-FF 184 of 28800 | 1%
Min. period 4.257ns

Max. frequency | 234MHz

8GB of RAM. Execution times include data transfer overhead
between the GPU and FPGA. We verified that the GPU and Mat-
lab implementations had the same output alpha profile with a
minimum error of 0.0041% and a maximum error of 0.0051%.
This error is due to the fact that MATLAB uses 64 bit double
variables whereas the GPU implementation uses 32 bit float-
ing point variables. Although not a user defined kernel, there
is an overhead incurred for transferring data from the CPU to
the GPU. In the current scenario, this is a one time cost. Trans-
ferring a 4096 point complex digital signal takes about 0.1 1ms.

Table 7: Execution time, throughout, power consumption analysis. Se-
rial SCD Flow (Matlab) vs. GPU (K20, Tegra K1) vs. GPU-FPGA
based on 4096 points digital signal

Serial GPU Hybrid
Tegra FPGA +

Platform Intel IS | K20 K1 Tegra K1
Total ime(ms) | 355, 53 | gog | 111.61 | 50.95
(per signal)
Speedup - 390x | 31x 58x
Signals/second | <1 11 |9 19
Power (W) 51W | 3.5W 5W

Running the entire flow on the K20 results with the best
throughput at 111 signals per second. However, power con-
sumption of the K20 when running the SCD is measured at 5S1W.
It is clear from the previous discussions that data manipulation
intensive kernels (steps 4.3 and 4.4) are not mappable to the GPU
efficiently particularly because of incomplete warp executions
and idle threads. The hybrid configuration ( a single lane that
couples FPGA and Tegra K1) shows the trade-off between power
consumption and throughput, resulting with 19 signals per sec-
ond at 5W. Therefore an architecture that houses a number of
these lanes poses as a desirable solution for exploiting signal
level parallelism. Based on these conclusions, we are now in
a position to lay out the details of our proposed n-lane hybrid
architecture.

As shown in Figure 16, we introduce a multi-lane architecture,
where each lane is composed of a Tegra TK1 GPU coupled with
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Figure 16: Tegra TK1 GPU coupled with Zyng FPGA as a single lane forming hybrid processing unit .

a Zynq FPGA. We introduce two types of bus structures. The
connections between the GPU and FPGA were introduced in the
earlier sections with a 4 elements/cycle data transfer from GPU
to FPGA and 1 element/cycle data transfer from FPGA to GPU
at the rate of 140MHz. We choose 140MHz to be in the same
clock domain as the FPGA. The second interconnect structure is
between the streaming FPGA and each execution lane. Here nat-
ural choice would be a star topology, since the streaming FPGA
as a head node sends signal data to its designated lane. How-
ever, considering the pin count limitation on the Tegra GPU, this
would result with a design that is not scalable. Ring structure
is preferable, because the packetizer FPGA pin count is fixed.
The overhead of round robin fashion of streaming to individual
lanes turns out to be small overhead when the bus clock rate is
at 200MHz. Here we summarize the execution flow by referring
to the numbers shown in Figure 16.

nn

1. Pre-processing unit (PPU) generates "n" buckets. Each
bucket is storing elements of an isolated signal. This data
(32KB per signal) is sent to "packetizer FPGA" (Xilinx,
Zedboard, SoC with 2 ARM processors and Zynq FPGA).

Packetizer FPGA streams data of each signal to the desig-
nated Lane (8 Bytes/clock cycle at 200MHz). We use ring
bus comprising of two channels (1 clockwise, 1 counter-
clock).

Tegra K1 on a specific lane snoops the bus, receives the
packets designated to that lane, completes GPU tasks and
sends data to Zynq FPGA to execute the FPGA tasks

FPGA sends the results back to Tegra K1

Tegra K1 sends the 4096 point alpha profile back to Pack-
etizer FPGA
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Tegra K1 houses 4 ARM Cores. We utilize two of these cores
in our design. First ARM Core on the Tegra K1 controls the
management of signal coming into the board and its storage in
the on-board RAM. This core also controls the data transfer from
RAM to the global memory of the GPU and launches the GPU
kernels as the host. Second ARM Core, controls the data transfer
from the GPU’s global memory when GPU tasks are completed
to the on-board RAM and from on-board RAM to the FPGA.
Since the PCB bus lies between the ARM core and FPGA with
the latter running at a lower clock speed, the bus frequency will
be at most equal to the FPGA clock speed, i.e. 140 MHz. Also,
each transfer between the ARM core 2 and the FPGA involves
sending 4 single precision floating point numbers. Therefore 16
bytes of data need to be transferred in the amount of time saved
from eliminating the two kernels on the GPU. The transfer over-
head for the PCI-E bus between the GPU and the RAM for 16
bytes of data is 16 bytes / 5.0443 GBps (3.17ns). The PCI-E
bus speed was obtained from the profiling data on the K20 GPU
system. It is likely that this speed is higher on the Tegra K1
since it is a SoC solution. Furthermore the PCI-e transfer over-
head is negligible in comparison to the PCB bus speed. This
is also true for the system bus between the RAM and the ARM
core 2. Theoretical maximum PCB bus speed is then equal to
140 x 10° x 16 Bytes, hence 2240 Megabytes per second. Re-
quired bus speed based on the savings from kernel elimination
is 2.38 Megabytes per second (16 bytes / 0.00671 ms). There-
fore we are well within the theoretical PCB bus speed limits.
Second ARM core receives the FPGA output and places it into
the on-board RAM. This data is then sent to the host device of
the GPU-FPGA integrated accelerator board. Considering that
each lane consumes around 5W, a 10-lane architecture would
consume the same amount of power as the K20 GPU. With 10
lanes, the theoretical throughput would be 190 signals/second.
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4. CONCLUSION AND FUTURE WORK

In this study we discuss our parallelization approach on the
GPU, present the implementation details for the entire SCD
flow in CUDA, and show that on a high-end (single Tesla K20)
GPU, execution time is 8.9ms (111 signals/second) with a power
consumption of 51W. On the low power (Tegra-K1) GPU, we
achieve 9 signals/second with a power consumption of 3.5W.
We then couple Tegra K1 with Zynq 7000 FPGA as an end-
to-end fully functional platform (single lane). We partition the
workload as data parallel coarse-grained calculations with reg-
ular data access patterns running on the GPU and fine-grained
calculations running on the FPGA. We discuss our profiling and
modeling based partitioning methodology, and lane based archi-
tecture development approach. Finally we show that on a single
lane, we achieve 19 signals/second with an estimated power con-
sumption of SW. We present the model of a scalable n-lane ar-
chitecture with a dual ring bus interconnect, and show that the
throughput is 190 signals/second with an estimated power con-
sumption that is equivalent to the power consumption of Tesla
K20 GPU.

We believe that there are a few avenues for improving the al-
gorithmic efficiency of the SCD. One promising strategy is to
focus on specific segments of the diamond structure (Figure 17)
and evaluate whether these segments are revealing enough in-
formation or not for a successful classification. For example if
the region in Figure 17 is good enough for classifying a signal,
then the workload size is expected to reduce by 75% resulting
with an estimated execution time reduction by a factor of 4.

Another problem to address would be to investigate whether
a specific region or pattern reveals just enough information for
a successful classification across all types of signals (AM, FM,
BPSK, QPSK, etc) consistently or not. We believe that there
is a chance of each signal type requiring different pattern. In
this case, when processing a signal, our approach would involve
a multi-stage evaluation. After processing the first 32KB of a
signal, the signal profile analysis stage could look for a patterns
or a signature that may lead to data reduction in the subsequent
32KB data for the same signal. This may lead to a solution that
involves adaptive filtering by processing region of interest in the
previous iteration and converge to the exact match in subsequent
iterations.
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Figure 17: Signal profile generation.
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